
MUST 1002: Max/MSP – 1 of 7

MIDI input and output

The [midiin] object accepts all incoming MIDI data. We will come back to this in due
course.
Other MIDI input/ouput objects are more selective in the data they accept:

notein: accepts input from, for example, the keyboard of the Oxygen8

ctlin: accepts input from, for example, the rotary dials on the Oxygen8

bendin: accepts input from, for example, the pitch bend control on the Oxygen8

You can double-click all of these objects to specify the MIDI input source as for midiin
above. They will also accept arguments specifying input port and channel no (though
outlets will be reduced to 2 if you add the latter).

For all of these objects you can add an argument that specifies an input port (you can also
do this by sending a number to input 1 of each object); not specifying an argument means
that they will look for MIDI information on all ports.

Having arranged MIDI input, we can now explore MIDI output. Most of the relevant objects
are just equivalents of the inputs we have just looked at:

MUST 1002: Max/MSP – 2 of 7

MIDI: handling note information

We could conceivably just use Max as a thru-put device, linking inputs to outputs. But we
can also create interesting algorithmic music-making devices by exploring some of the
other objects Max offers:

[makenote]
To start a MIDI instrument sounding, you need to send both a note number and specify a
velocity. To stop a note you must send the same note number with a velocity of 0. Since it
is easy to forget to do this, particularly when you are playing several notes in succession,
there is an object which allows you to specify a note and starting velocity plus a duration.
The object will automatically send a ‘note-off’ (i.e. a 0) after the specified duration.
[makenote] takes 2 arguments: arg1 = initial velocity; arg2 = initial duration (both can be
overridden by messages in inlets 2 & 3 respectively)

[flush]
Flush sends a 0 velocity to every note and is a good ‘panic’ facility, in case you have
forgotten to send note-offs to any of the notes you have played.

[stripnote]
This pretty-much performs the opposite function to makenote. Applied to anything coming
from notein, this strips away all note-offs (i.e. any notes with a velocity of 0), passing only
the note-on information

MUST 1002: Max/MSP – 3 of 7

More on MIDI input and output

[midiin], [midiout], [midiparse] and [midiformat]:
MIDI is generally sent in a list of two or three items:

o item 1 (status byte) is a number which refers to the type of information being sent
(e.g. noteon, controller, pitch bend etc);

o items 2 & 3 (value bytes) are the values that each of these types requires (e.g., for
noteon: note number and velocity). Most of the time you will not need to know this.
But for reference, the information is as follows:

[midiin] accepts all of this raw incoming MIDI data and its output must be sent to
[midiparse] which divides it into notein, ctlin and bendin (etc.) information; it also deals with
Poly Pressure and After Touch information. Note that some outputs are in list format so
need to be unpacked.
table autofit
[midiformat] and [midiout] invert the above functions.

Delay objects

[delay]
This accepts only a bang and delays its input by the duration (in ms) specified
as an argument. The delay length can be changed by a message received in
inlet2. Delay only delays the last message it receives – previous bangs will be
forgotten.

[pipe]
Pipe also acts as a delay but accepts integers. It also has a memory, so will store delayed
values, outputting them after an appropriate delay time. (tutorial 22)

MUST 1002: Max/MSP – 4 of 7

Random objects

Random objects can be used to choose at random from a set of available numbers in a
particular way:

[random]
Outputs a range of random numbers – size of range dictated by the argument (and can be
changed by a number message sent to inlet2.

[drunk]
Also outputs a range of numbers with size of range dictated by argument 1. A second
argument dictates the size of leap between subsequent output numbers.

[urn]
Outputs range of numbers with size of range dictated by argument 1. But this object
remembers the numbers it has already output; once a number has been used it won’t be used
again. Thus in this example, only 100 numbers will be output. Clear is required to purge the
memory, making all 100 numbers available again.

[decide]
Outputs 1s & 0s at random. Can be used to decide whether a gate is open or closed, for
example.

MUST 1002: Max/MSP – 5 of 7

Directing messages

There will often be times where you will want to direct messages to one place for one set of
circumstances, and to another for another set.

[switch] and [gate]:
Gates are used to direct messages to specific places, or choose whether they are sent at all.
Switches are used to choose between incoming messages, or to choose whether any are
accepted at all.

[select] ([sel]):
[select] accepts all messages and compares them to the object’s arguments. Those that
match cause a bang to be sent out of the matching argument’s corresponding outlet. Those
that don’t are spat out of the rightmost outlet. If [select] is given only one argument, the object
produces a second inlet which allows you to change the argument to be matched.

[route]
[route] operates similarly to [select] but accepts lists as inputs. The first element in the list is
compared with [route]’s arguments and the remaining elements in that list are sent out of the
matching argument’s outlet. If there are no other elements in the list, i.e. [route] just receives
an int/float/symbol that matches an argument, it operates like select and sends out a bang.
Lists/ints/floats/symbols that don’t match are spat out the rightmost outlet.

MUST 1002: Max/MSP – 6 of 7

MUST 1002: Max/MSP – 7 of 7

