MUST 1002: Max/MSP — 107

MIDI input and output

The [midiin] object accepts all incoming MIDI data. We will come back to this in due
course.

Other MIDI input/ouput objects are more selective in the data they accept:

notein: accepts input from, for example, the keyboard of the Oxygen8

[notein | <= N.B. number boxes will display note
I I outlet! : MIDI note number numbers : In the Inspector (Cmd-1), for
Ban | PO | Pt | outlet2: velocity value Display Style choose MIDI Note Names

outlet3: channel number

ctlin: accepts input from, for example, the rotary dials on the Oxygen8

|ctlin outlet! : controller value
! ! ! outlet2: controller number
[}92 I [>I 10 I [>1 | outlet3: channel number

bendin: accepts input from, for example, the pitch bend control on the Oxygen8

outlet! : bend value

[>64 | D‘ | outlet2: channel number

You can double-click all of these objects to specify the MIDI input source as for midiin
above. They will also accept arguments specifying input port and channel no (though
outlets will be reduced to 2 if you add the latter).

For all of these objects you can add an argument that specifies an input port (you can also
do this by sending a number to input 1 of each object); not specifying an argument means
that they will look for MIDI information on all ports.

Having arranged MIDI input, we can now explore MIDI output. Most of the relevant objects
are just equivalents of the inputs we have just looked at:

MUST 1002: Max/MSP — 207

MIDI: handling note information

We could conceivably just use Max as a thru-put device, linking inputs to outputs. But we
can also create interesting algorithmic music-making devices by exploring some of the
other objects Max offers:

[makenote]

To start a MIDI instrument sounding, you need to send both a note number and specify a
velocity. To stop a note you must send the same note number with a velocity of 0. Since it
is easy to forget to do this, particularly when you are playing several notes in succession,
there is an object which allows you to specify a note and starting velocity plus a duration.
The object will automatically send a ‘note-off’ (i.e. a 0) after the specified duration.
[makenote] takes 2 arguments: arg1 = initial velocity; arg2 = initial duration (both can be
overridden by messages in inlets 2 & 3 respectively)

[flush]
Flush sends a 0 velocity to every note and is a good ‘panic’ facility, in case you have
forgotten to send note-offs to any of the notes you have played.

[stripnote]

This pretty-much performs the opposite function to makenote. Applied to anything coming
from notein, this strips away all note-offs (i.e. any notes with a velocity of 0), passing only
the note-on information

MUST 1002: Max/MSP — 307

More on MIDI input and output

[midiin], [midiout], [midiparse] and [midiformat]:
MIDI is generally sent in a list of two or three items:
o item 1 (status byte) is a number which refers to the type of information being sent
(e.g. noteon, controller, pitch bend etc);

o items 2 & 3 (value bytes) are the values that each of these types requires (e.g., for
noteon: note number and velocity). Most of the time you will not need to know this.

But for reference, the information is as follows:

item 1 information type item 2 item 3
128-143 notecff (ch 1-16) note (0-127) velocity (0-127)
144-158 neteon, (gh 1-16) note (0-127) velocity (0-127)
160-175 aftertouch (gh 1-16) note number (0-127) key pressure (0-127)
176-191 controllers [modulation wheel & pots on controller value (0-127) controller number [0-127)
Oxygend] (gh 1-16)
192-207 program change (gh 1-16) program number (0-127)
224-238 pitch wheel range (gh 1-16) pitch bend (0-127)

[midiin] accepts all of this raw incoming MIDI data and its output must be sent to
[midiparse] which divides it into notein, ctlin and bendin (etc.) information; it also deals with
Poly Pressure and After Touch information. Note that some outputs are in list format so

need to be unpacked.
table autofit

[midiformat] and [midiout] invert the above functions.

[midiparse | |midiparse |
[[| [[| — =
[midiformat | [unpack | unpack | PO | PO | l>0 [>0
EEm ke JhodkeJhoJio Jho 1E] i i
Note Poly Control Pgm After Pitch MIDI
On/0Off Pressure Change Change Touch Bend Channel

Delay objects

[delay]

This accepts only a bang and delays its input by the duration (in ms) specified
as an argument. The delay length can be changed by a message received in
inlet2. Delay only delays the last message it receives — previous bangs will be

forgotten.

[pipe]

Pipe also acts as a delay but accepts integers. It also has a memory, so will store delayed
values, outputting them after an appropriate delay time. (tutorial 22)

MUST 1002: Max/MSP — 4 of 7

Random objects

Random objects can be used to choose at random from a set of available numbers in a
particular way:

[random]

Outputs a range of random numbers — size of range dictated by the argument (and can be
changed by a number message sent to inlet2.

<-bang triggers output

randorm 100

<-argqument specifies range size,
this will output numbers 0-99.

<-add an offset to change range limits

po | po |

1-100 50-149

[drunk]

Also outputs a range of numbers with size of range dictated by argument 1. A second
argument dictates the size of leap between subsequent output numbers.

<-bang triggers output

drunk 100 5

argurment! : range size
arqurent2: step size

outputs 0-99 with step sizes no greater than S (thus output
might be S0, 52, 50, 47, 43, 44, 40 etc)

[urn]

Outputs range of numbers with size of range dictated by argument 1. But this object
remembers the numbers it has already output; once a number has been used it won't be used
again. Thus in this example, only 100 numbers will be output. Clear is required to purge the
memory, making all 100 numbers available again.

<= ¢lear clears memory of
already-output numbers

[decide]
Outputs 1s & Os at random. Can be used to decide whether a gate is open or closed, for
example.

<= N.B. trigger object to ensure things happen in right
order (i.e. gate status decided before random triggered)

MUST 1002: Max/MSP —50f7

Directing messages

There will often be times where you will want to direct messages to one place for one set of
circumstances, and to another for another set.

[switch] and [gate]:

Gates are used to direct messages to specific places, or choose whether they are sent at all.
Switches are used to choose between incoming messages, or to choose whether any are
accepted at all.

£l
Br_]
gate: E 4 switch :
inlet 1: toggles output on(1) & of O], # argument specifies number of inlets (default: 2)
® inlet 2: takes message E ® inlet 1: specifies which inlet iz on (0 = all off)
ey ® inlets 2/3/4/5; take messages
gate:

® argurnent specifies number of outlets

® inlet 1: specifies which outlet iz on (0 = all off)

® inlet 2: takes message

______ gqate [graphic gate]:) gswitch [graphic switch):
® inlet 1: toggles between outletz 1000 & 2010 [|77 ® inlet 1: toggles between inlets 1000 & 201)
® input 2 : takes message ® inlets 2/%; take messages
(]

[select] ([sel]):

[select] accepts all messages and compares them to the object’s arguments. Those that
match cause a bang to be sent out of the matching argument’s corresponding outlet. Those
that don’t are spat out of the rightmost outlet. If [select] is given only one argument, the object
produces a second inlet which allows you to change the argument to be matched.

sel outputs a bang from an
outlet that matches its
corresponding argument

right-rmost outlet spits out
raw inputs that do not match
any of the arguments

[route]

[route] operates similarly to [select] but accepts lists as inputs. The first element in the list is
compared with [route]’'s arguments and the remaining elements in that list are sent out of the
matching argument’s outlet. If there are no other elements in the list, i.e. [route] just receives
an int/float/symbol that matches an argument, it operates like select and sends out a bang.
Lists/ints/floats/symbols that don’t match are spat out the rightmost outlet.

[append 7 | [prepend dog | [32.5 |[12345 |

I | J -
XS Max
|route 1 cat 32.5 dog | =
® 1990-2003 Cycling ‘74 / IRCAM

b 1B Bz] narzsas
|print outletl |

: Max/MSP —60f7

MUST 1002

repeating arpeggio using select:

rmetro SO0

randorn arpeggiation using select:

commmas act as message dividers:

_mﬂ S 432 open grapenut _ there iz one message in this box

_m_ﬂ 5, 43, open grapenut _ there are three messages in this box

M.E. [Fandarm]
produces randorn
values between O
and OME LESS than
its argurmnent. So add
1 to the output to
give [in this case) a
range of 1-4.

rmakenote &4 S00

(trv sending to [print] to test)

rnakenote &4 200

[noteout | % sending the same walue
to both [metro] and
[rakenote] duration, the
note will last as long as
the delay between beats.

chord selection using ggate & gate:

[] [eo.es.e7.72] p=
|

|60, 64, 67, T2

niote difference :
0 =sent to ggate = zend out left outlet;

»

0 zent to gate = gate off (i.e. no output)

: Max/MSP — 7ot 7

MUST 1002

[double-click notein when the patch is closed and set to Keyboard]

notein

W_n_ <= note nurnber

output 3rd)

pe-2 |
to get midi note namesin the
nurnber boi, highlight it,
then go to Ob ject:Get Info
and choose MIDI Mote Marme
fram the ‘Display Style’

these [+] boxes accept note nurber and add
by the walues needed to 'convert’ this data

to maj3rd, perfSth & Sve above input note
Cinput note is also passed to the output)

4= pote velocity
[output Znd]

<= channel
[output 1st)

nioteout

[double-click noteout when the patch is closed and set to Quicktire]

<= gend 0 ar 1 toinlet 1 of ggate; it will send
subzequent messages received in inlet 2 out
of outlets 1 and 2 respectively.

<= gate operates similarly but has more
outlets, each represented by a number in
inlet1 of gate [if a O received, the gate
iz closed (ie. no meszages get thraughl)

If wou do not have a keyboard connected to wour computer
Lor the keyboard doesn't work], connect as follows:

T
_ C
rmakenote 64 500 <= [makenate] creates noteoffs for every note
T that it receives a specified duration after the

note starts (2nd argurnent controls duration.

]

[rotein

po__|

T
pipe 500 pipe 200 || <- pipe delays every number

arqurnent or right inlet.

[oteout

that it receives by the nurber
of millizeconds specified in the

zelect compares the number it receives
with the nurmbers given az argurnents
and outputs a bang from the appropriate
outlet when it finds matches

