
Max/MSP exercises 2a

Monday, 15 February 2010

Ex.X

There are various types of message that Max understands.

Max deals with these message types differently, so you will need to be aware of
what each is, which objects use which data type, and how each is abbreviated in
Max.

type abbr definition

integer/int i or 0 a whole number (e.g. 1, 2, 3, 4

float f or 0 a number with a decimal point (e.g. 1., 2.5, 3.141592654)

symbol s a word or series of letters (e.g. foo, dog, adsofh)

list l a series of numbers/symbols grouped as a single message (e.g. dog 1 3.5
seventeen, 1.2407584 17 x blob)

bang b a message that says ‘do it’, ‘carry out that function’ etc.

Monday, 15 February 2010

Ex.1

1. Copy this patch. It’s very
similar to the one we made last
week but this one plays a
sequence of notes on the piano
synth setting of your computer’s
internal synth.

There is actually an awful lot
you can do with just these
simple objects in Max. Exploring
them will help you significantly
to get your head around the
logic of building sequences of
events over time.
We will also use this patch as a
starting point to investigate
some new objects.

Monday, 15 February 2010

Ex.2

1. Modify the patch as shown. Lock the patch and
switch on the [metro] again. Use the [toggle] to
switch between [counter] and [random] ‘modes’.
What is the range of numbers that [random] is
outputting? (allow yourself a few seconds to figure
this out: it’s important).

2. What do you need to do to the output of [random] to ensure that all numbers
in the [select] object will be accessible? (Clue: it involves a [+] object and the
simplest of maths)

Monday, 15 February 2010

Ex.3

1. Modify the patch as follows (the new objects are in red). Lock the patch and
press the message boxes in turn (allow each to run through its sequence before
clicking the next).

Make sure you understand how this is working, then move on.

To speed things up a bit, copy
the following lists of numbers
into each of the message
boxes

1

2

3

4

5

6

7

60 64 67 72 76 67 72 76

60 62 69 74 77 69 74 77

59 62 67 74 77 67 74 77

60 64 69 76 81 69 76 81

60 62 66 69 74 66 69 74

59 62 67 74 79 67 74 79

59 60 64 67 72 64 67 72

Monday, 15 February 2010

Ex.3 (cont)

You might have recognised that when in [counter] mode these are the pitches
for the first few bars of a Bach Prelude. We’ll say that each series of eight notes
is a ‘bar’. Each bar (i.e. each sequence of notes in the [message box]es) needs to
be played twice each to play the piece correctly.

At the moment you would have to click the [message box]es manually in order
to get the note sequences to change in the right order and at the right time. But
surely we can get Max to do this for us...

It turns out that we can, simply by using [select] and [counter] objects.

What we need to do is to get Max to recognise the first beat of each bar, count
each bar, then (on the basis of this count) choose a [message] box with the
appropriate sequence.

Make sure you understand how this is working, then move on.

Monday, 15 February 2010

Ex.3 (cont)

2. Copy this routine:

3. Referring to the lists on p5, the sequences should play in order as follows
(notice there are (conveniently) 16 numbers below...):
1, 1, 2, 2, 3, 3, 1, 1, 4, 4, 5, 5, 6, 6, 7, 7

connect this from the [int] number box of the ‘beat’ count.

allocates each ‘count’ to a different outlet. So each of these
outlets should be connected to a [message box] containing the
appropriate sequence.

Hopefully this demonstrates that you can, via hierarchies of [select]s and
[counter]s, articulate a larger-scale structure. There are more elegant ways, of
course (check out the [coll] and [table] objects -- we’ll look at these later) but
these will do for now.

selects the first beat of each ‘bar’

counts each ‘bar’

Monday, 15 February 2010

Ex.3 (cont)

4. Download the patch ‘Prelude.maxpat’ from the MUST1002 website. Start the
[metro] and listen to the whole sequence.
Now move the [select] object to the far left-hand side of the patch as shown in
below and listen to the whole sequence again.
Apart from making the patch ugly, what has happened? When do the arpeggiated
chords change? Why has the behaviour of the patch altered?

5. [challenge] Add a means of getting the patch to trigger these sequences in
random order.
Monday, 15 February 2010

Ex.4

1. Download the patch ‘blue.maxpat’ from the MUST1002 website. This is very
similar to what you’ve seen in the last exercise. There are a couple of extra bits
(what is the [%] object doing here, for example?) so look at the patch carefully
and see if you can figure out how it works. Modify it if that helps.

2. Download the patch ‘prelude2.maxpat’ from the MUST1002 website. Here
we’re back to the Bach Prelude, but this patch uses the [coll] object to store the
note sequences. This is a very powerful object. Use the ‘help’ resources (press ‘alt’
and click on the object) to figure out how it works (we will look at this object in
more detail later on).

Monday, 15 February 2010

Ex.5 (a challenge!)

Build your own: AUTO-ACCOMPANIST
This instrument is designed to play a concordant chord for each diatonic note
from C-2 to C-3.

1. Download and open the patch ‘aa.maxpat’ from the MUST1002 website. Make
sure you understand how it works.

2. Use a [select] object to recognise the MIDI note number for each diatonic
note of the C-2 to C-3 scale. You will need to know the MIDI value for each of
these notes (use the keyboard below to help you with this).

Monday, 15 February 2010

Ex.5 (cont)

3. Using three [message box]es, and referring to the exercise above, create
message boxes that would play the following chords:
a)	
 C-3, E-3, G-3, C-4; (again, you will need to work out the MIDI values for each
of these)
b)	
 D-3, F-3, G-3, B-3;
c)	
 C-3, F-3, A-3, C-4.
Connect these to the [makenote] object (left-hand inlet) and test them.

4. Connect the patch so that:
a)	
 notes C-2, E-2, G-2 and C-3 trigger chord a);
b)	
 notes D-2, F-2 and B-2 trigger chord b);
c)	
 note A-2 triggers chord c).

Monday, 15 February 2010

Ex.6

1.Let’s explore some objects in Max that will allow you to
communicate with MIDI ins and outs on your computer. Copy this
routine:

2. If you have a keyboard connected to your machine, lock the
patch and double-click on the [note-in] object. Check that
‘keystation’ appears in the list (it doesn’t here because I don’t have
an Oxygen8 at home) and choose it. If it isn’t there, go to the
Audio/MIDI setup for your computer and establish whether the
keyboard is recognised there.

3. Assuming you have a MIDI keyboard, try playing notes on it. You
should find that what you play is routed straight to the Mac’s
onboard synth (i.e. you’ll get a piano sound).

4. Add number boxes to the outlets of [notein]. What do the
numbers represent (if you’re not sure, hover the cursor over the
outlets)?
Monday, 15 February 2010

Ex.6 (cont)

5. Using some of the maths objects you’ve come across, modify the patch so that
it is possible to...:

- transpose each note on the keyboard upwards by one octave;
- transpose each note on the keyboard downwards by one octave.

6. If you have a connected keyboard, Copy the
following into the same patch. Now move
the modulation wheel while hitting notes. What
happens?

7. Hover your cursor over each of the outlets of the [ctlin] object and note what
they are outputting. Move each of the controller pots on the keyboard. You will
notice that the middle outlet registers the controller number for each of the
pots (the modulation wheel is always controller number 1), while the left-hand
outlet gives the value for that controller.

Monday, 15 February 2010

Ex.6 (cont)

8. Choose one of the controller pots on the keyboard and move it. Note the
controller number. Now write that controller number as an argument into the
[ctlin] object. You should now find that only the pot that you first moved will be
recognised by that [ctlin] object. Make further [ctlin] objects with different
arguments to be controlled by different pots.

9. Copy the following and move the modulation wheel
while hitting notes:

This should demonstrate, once again, that we are simply dealing with numbers
here, and that these numbers can be mapped and remapped to perform different
tasks.

notice that adding an argument to
[ctlin] changes the number of outlets

Monday, 15 February 2010

Ex.6 (cont)

N.B. Different MIDI input and output objects ([notein]/[noteout], [bendin]/
[bendout] etc) will all take a ‘channel’ argument. All of the following input objects
will receive data from MIDI channel 1. Meanwhile all of the output channels will
send data to the same instrument on the external MIDI synth. By default different
channels on the output synth tend to be routed to different instruments. Channel
10 is usually dedicated to General Percussion sounds (though this can be
changed), which is what we were using in Wk1.

in the [ctlin]/[ctlout] objects the channel number is the second
argument (the first is the controller number, remember)

Monday, 15 February 2010

Ex.7

1. Returning to the prelude.maxpat patch, try getting the modulation wheel to
control the speed of your [metro] object.

You will notice that simply connecting a [ctlin] object to the right-hand inlet of
[metro] produces unsatisfactory results. So insert a [scale] object into your
patch, figure out how it works (use its ‘help’ patch) and it to scale the MIDI data
to useful values for [metro] (e.g. 50 - 1000).

2. We could also get the instrument timbre to change each time [metro] triggers
a note by sending new values to a [pgmout] object. Try this using

- a [counter] object (this would need to count from 1 to 127)
- a [random] object (this will need to work within a range of 1 to 127)

Monday, 15 February 2010

