
Max/MSP exercises 3b



Ex.1

In the first week we made a step sequencer for playing drum patterns. Now let’s 
consider making some tunes. 

1. Copy this routine. Switch on the [metro], then 
draw some wiggly lines into the [itable] object.

This is the [itable] object. It looks like this in the object 
palette:

Like [coll], [itable] has an index and stored value. Its index is 
stored on the ‘x’ axis and its stored value on the ‘y’ axis. This 
patch reads through the table from left-to-right. 



Ex.1 (cont)

We could further [itable]s to dictate the velocities and note lengths for each of 
the notes in this first [itable].

2. Use a [pgmout] object to find a sustained instrument (17 or 18 are decent 
organ sounds). This will enable you to hear the changing note lengths more 
effectively.

3. Add two more [itable] objects. Connect the [number box] to the first inlet of 
each of these, and their first outlets to the second (velocity) and third (note 
length) inlets of [makenote] as per the following:



Ex.1 (cont)

Note that the note lengths remain very short. This is because the range of 
[itable] is limited to 128 (so we only have a range of 0-127ms note duration). To 
remedy this, we can use the object’s inspector window.

4. Click on the [itable] used for note lengths and press -I (or Ctrl-I in 
Windows). The inspector window contains information about the object that you 
can change -- very much like adding arguments to it (in fact that is essentially 
what you are doing).

5. Scroll to where you find the entry 
for Table Range and change it to 1000. 
Your [itable] y-axis will now read 0-999.

6. Investigate the other properties of
[itable] that you can change via the
inspector window.



Ex.1 (cont)

Having a table size of 127 isn’t particularly useful to us in our pursuit of tune 
generation; we’d more likely want shorter bar lengths of 8, 16 or 32 beats. And 
we may want to reduce the range of available notes to a couple of objects.

7. In the inspector window of the [itable] for note numbers (i.e. the left-most 
one):
- change Table Size to 16 (for beats) 
- change Table Range to 26 (for semitones -- this will give us just over two 
octaves)
- tick the check-box for Note Name Legend (the y-axis will now have note name 
labels instead of numbers -- C-2 to C#0).



Ex.1 (cont)

8. Our note range for this [itable] is therefore rather low, so we’ll transpose it up 
by five octaves (by adding 60 semitones):

Of course this means our MIDI note-name label on [itable] shows the wrong 
octave. But at least we get the right degree of the scale...

9. A few more things to change before the whole thing works satisfactorily:
- add a [number] box above [metro] to enable you to reduce the tempo
- change the values in [counter] to only count 16 beats (remember [itable] values 
start at 0, so you’ll need to take that into account)
- change the Table Size of both the velocity and note duration [itable]s

the [number] box can also be made to display 
MIDI note names: just change the Display 
Format in its inspector window to ‘MIDI’



Ex.2

Our tune is a bit relentless as there are no rests. So we’ll deal with that issue 
next.

You will recall that we chose a 26 note range in Ex1.7 (0-25). Which leaves us 
with an extra, somewhat redundant, C# on top of our two octaves. So we’ll get 
Max to ignore this note completely, treating it as a rest.

1. Add a [select] object with an argument of 25 (remember that this is the 26th 
note (0-25)) beneath your note-number [itable] as follows:

Any ‘notes’ you insert right at the top of the note-number [itable] will now 
trigger rests.

Normally we would be using [select] to send output when it recognises a 
number. But here we are taking the right-most outlet of [select] which spits out 
anything it doesn’t recognise. This means that the number 25 is completely 
ignored. Only the other numbers (the notes we want to hear) are let through. 



Ex.3

1. Download the patch ‘polytuneseq.maxpat’ from the MUST1002 website and 
open it. This is a development of the instrument you have just made (omitting the 
velocity and note-length parameters).

2. Explore the patch as follows:
a) turn on the metro;
b) turn on each of the voices in turn, noting the use of different channels and 
instruments (see [pgmout] and [noteout] objects);
c) turn on each of the changes toggles in turn, noting that the tunes now 
change on every bar. You should end up with some quite complex textures 
between the various voices.
d) double-click the [table]s labelled ‘tune1’, ‘tune2’ etc. These work in much 
the same way as the [itable] object, but are editable within a pop-up window.
e) double-click one of the [patcher voice] objects and explore the sub-patch. 
Read the labels carefully from top to bottom. Much of it should be either 
familiar or self-explanatory.


